Calcul de limites de fonctions

JP Vallon

Lycée Gaspard Monge - Savigny sur Orge

2011

Lignes directrices

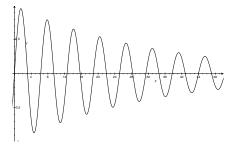
- Comportement asymptotique d'une fonction
- 2 Analyse
- Principaux théorèmes
- Asymptotes

Motivation

A quoi sert le calcul de limites?

- A créer des objets nouveaux par exemple le nombre dérivé d'une fonction en un point.
- A définir le comportement asymptotique d'une fonction

Comportement asymptotique d'une fonction



Le comportement asymptotique d'une fonction est le fait qu'"au bout d'un certain moment" une fonction va se comporter comme une fonction "plus simple".

lci $f(x) = e^{-0.03x} \times \sin(x)$ va "se rapprocher " de g(x) = 0 lorsque x "tend vers l'infini"

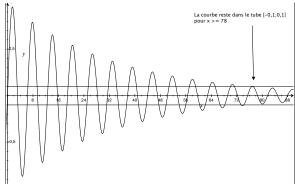
Langage des limites

Il s'agit de donner un sens mathématique à tous les mots ambigus entre guillemets.

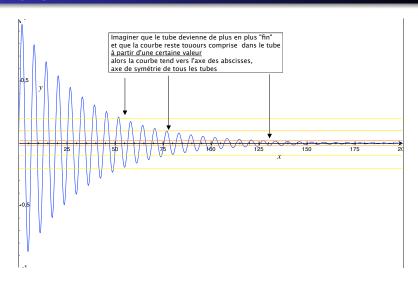
Que signifie qu'une fonction *f* a une limite 0 lorsque *x* tend vers l'infini?

Langage des limites

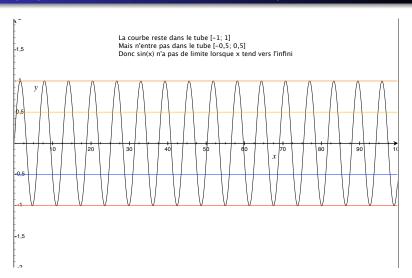
- On appelle tube de rayon r la donnée de deux droites horizontales d'équation y = r et y = -r
- Graphiquement II semble que la courbe soit comprise dans le tube de rayon 0,1 lorsque x > 78



Langage des limites



Langage des limites : Contre-exemple



Définition

Définition (numérique)

Si pour tout tube de rayon r, (autrement dit r peut prendre des valeurs de plus en plus petites)

il existe une valeur x_r dépendant d'une certaine manière de r telle que

Si $x \ge x_r$ alors $f(x) \in [-r; r]$

On dit alors que f(x) tend vers 0 si x tend vers plus l'infini ce qui s'écrit :

$$\lim_{x\to+\infty}f(x)=0$$

Définition - Remarques

Remarques

- Cette définition peut être adaptée pour tous les cas :
 x tend vers un nombre fini ou f(x) tend vers l'infini....
 (Voir à la fin du cours la définition où f(x) tend vers l'infini)
- Une définition est rarement pratique pour résoudre les problèmes.
- Elle sert surtout à démontrer les théorèmes qui eux sont utiles pour résoudre les problèmes.

Méthode = Analyse

Avant de parler des théorèmes un petit mot sur une méthode très générale utilisée un peu partout (en informatique par exemple) et qui structure ce cours.

- Analyser un problème c'est décomposer un problème en sous-problèmes élémentaires.
- Un problème, considéré comme élémentaire, est "mémorisé" une fois pour toutes.
- Les théorèmes servent à "recoller" les éléments entre eux et résoudre le problème.

Limites élémentaires

•
$$\lim_{x \to +\infty} x, x^2, x^3, ... x^n = +\infty$$

$$\bullet \lim_{x \to +\infty} \frac{1}{x}, \frac{1}{x^2}, \dots \frac{1}{x^n} = 0$$

$$\begin{aligned} &\bullet & \lim_{x \to +\infty} x, x^2, x^3, ... x^n = +\infty \\ &\bullet & \lim_{x \to +\infty} \frac{1}{x}, \frac{1}{x^2}, ... \frac{1}{x^n} = 0 \\ &\bullet & \lim_{x \to 0^+} \frac{1}{x}, \frac{1}{x^2}, ... \frac{1}{x^n} = +\infty \\ &\bullet & \lim_{x \to +\infty} \sqrt{x} = x^{\frac{1}{2}} = +\infty \end{aligned}$$

•
$$\lim_{x\to+\infty}\sqrt{x}=x^{\frac{1}{2}}=+\infty$$

•
$$\lim_{x\to+\infty} e^x = +\infty$$

•
$$\lim_{x\to -\infty} e^x = 0$$

Remarque 1: $x \to 0^+$ signifie que $x \to 0$ et x > 0

Remarque 2 : A chaque fois que l'on apprend une nouvelle fonction on apprend sa fonction dérivée et ses limites si elles existent!

Ainsi en cette année de Terminale où on a découvert la fonction exponentielle réelle, il faut bien connaître la fonction dérivée et les limites de cette nouvelle fonction.

Théorèmes algébriques

Faire de l'algèbre avec les fonctions c'est ajouter (ou soustraire) multiplier (ou diviser) et composer des fonctions.

Dans ce qui suit x tend vers a un réel ou $\pm \infty$

- Théorème (multiplication par une constante $k \neq 0$) :
 - Si f a pour limite l alors kf a pour limite kl

Exemple:
$$\lim_{x\to +\infty} -x^2 = -1 \times x^2 = -\infty$$

- Théorème (addition) :
 - Si f a pour limite l et si g a pour limite l' alors f + g a pour limite l + l'.
 - On ne peut rien dire si $I = +\infty$ et si $I' = -\infty$ ou vice-versa
 - Exemple: $\lim_{x\to+\infty} x^3, x^2 = +\infty$
 - $\overline{\text{donc lim}_{x\to +\infty}} x^3 + x^2 = +\infty$

Théorèmes algébriques

• Théorème (multiplication) :

Si f a pour limite I et si g a pour limite I' alors $f \times g$ a pour limite I + I'.

On ne peut rien dire si $I=\pm\infty$ et si I'=0 ou vice-versa Exemple: $\lim_{x\to+\infty}x=+\infty$ et $\lim_{x\to+\infty}e^x=+\infty$ donc $\lim_{x\to+\infty}xe^x=+\infty$

Théorème (composition) :

Si *f* a pour limite *b* lorsque *x* tend vers *a* si *g* a pour limite *l* lorsque *x* tend vers *b* alors *g* o *f* tend vers *l* lorsque *x* tend vers *a*

Exemple:
$$\lim_{x\to +\infty} \frac{1}{x} = 0$$
 et $\lim_{x\to +\infty} e^x = +\infty$ alors $\lim_{x\to +\infty} \frac{1}{e^x} = 0$

Théorèmes de comparaison

Si deux fonctions f et g vérifient f ≤ g sur un intervalle l contenant a et si f a pour limite l et si g a pour limite l' lorsque x tend vers a alors l ≤ l'.

Exemple:
$$x \le e^x \text{ sur } \mathbb{R} \text{ or } \lim_{x \to +\infty} x = +\infty$$

donc $\lim_{x \to +\infty} e^x = +\infty$

• Si trois fonctions f, g et h sont telles que : $g \le f \le h$ sur un intervalle I contenant a si g et h ont même limite I lorsque x tend vers a alors f a aussi la même limite I $\frac{\text{Exemple}:}{\text{lim}_{x \to +\infty}} = -e^{-0.03x} \le e^{-0.03x} \times \sin(x) \le e^{-0.03x} \times \sin(x) = 0$ $\frac{1}{\text{lim}_{x \to +\infty}} = -e^{-0.03x} = 0 \text{ donc } \lim_{x \to +\infty} e^{-0.03x} \times \sin(x) = 0$

Croissance comparée

Il s'agit de comparer entre elles les fonctions élémentaires dans leur comportement asymptotique.

•
$$\lim_{x \to +\infty} \frac{x^n}{x^m} = +\infty$$
 si $n > m$ et =0 si $n < m$

•
$$\lim_{x \to +\infty} \frac{\frac{1}{x^n}}{\frac{1}{x^m}} = 0$$
 si $n > m$

•
$$\lim_{x\to+\infty}\frac{\mathrm{e}^x}{x^n}=+\infty$$
 si $n>0$

•
$$\lim_{x\to-\infty}\frac{\mathrm{e}^x}{\frac{1}{x^n}}=\lim_{x\to-\infty}x^n\mathrm{e}^x=0$$
 si $n>0$

Les deux derniers sont à connaître par coeur.

Forme indéterminée

Lorsqu'on ne peut rien dire quand on utilise les théorèmes d'addition ou de multiplication on s'en sort en utilisant la croissance comparée.

Exemples:

•
$$x^2 - x = x(\frac{x^2}{x} - 1)$$

 $\lim_{x \to +\infty} \frac{x^2}{x} = +\infty$ donc $\lim_{x \to +\infty} \frac{x^2}{x} - 1 = +\infty$
et $\lim_{x \to +\infty} x(\frac{x^2}{x} - 1) = +\infty$ (en utilisant le théorème du produit)

•
$$e^x - x = x(\frac{e^x}{x} - 1)$$
 de même $\lim_{x \to +\infty} x(\frac{e^x}{x} - 1) = +\infty$

Asymptote horizontale

Le calcul de limites va servir à justifier ce qui se devine graphiquement

On dit que la courbe représentative de f notée C_f a pour asymptote horizontale la droite D d'équation y=k en $+\infty$ si $\lim_{x\to +\infty} f(x)=k$

Exemple:

La courbe de $f(x) = e^{-0.03x} \times \sin(x)$ a pour asymptote horizontale l'axe des abscisses

Asymptote oblique

On dit que la courbe représentative de f notée C_f a pour asymptote oblique la droite D d'équation y = ax + b en $+\infty$ si $\lim_{x \to +\infty} f(x) - (ax + b) = 0$ $\underline{\text{Exemple}}$: $\underline{\text{La courbe}}$ de $f(x) = x + e^{-x}$ a pour asymptote oblique la droite d'équation y = x $\underline{\text{car }} \lim_{x \to +\infty} x + e^{-x} - x = \lim_{x \to +\infty} e^{-x} = 0$

Asymptote verticale

On dit que la courbe représentative de f notée C_f a pour asymptote verticale la droite D d'équation x=k si $\lim_{x\to k^+}=\pm\infty$ ou $\lim_{x\to k^-}=\pm\infty$ $x\to k^+$ signifie que $x\to k$ et x>k

Exemple:

La courbe de $f(x)=\frac{1}{x-1}$ a pour asymptote verticale la droite d'équation x=1 car $\lim_{x\to 1^+} x-1=0^+$ et $\lim_{x\to 0^+} \frac{1}{x}=+\infty$

Bilan

Pourquoi apprendre tout ça?

En sciences un peu de théorie fait avancer la pratique et aide à la compréhension de ce qui est étudié.

Ce qui ne signifie pas qu'en dehors de la théorie point de salut....

Exemple d'application :

 En informatique on définit la complexité d'un programme à partir du comportement asymptotique d'une fonction

Définition

Définition

Si pour tout r, (autrement dit r peut prendre des valeurs de plus en plus grandes)

il existe une valeur x_r dépendant d'une certaine manière de r telle que

Si $x \ge x_r$ alors $f(x) \ge r$

On dit alors que f(x) tend vers $+\infty$ si x tend vers plus l'infini ce qui s'écrit :

$$\lim_{x\to+\infty}f(x)=+\infty$$

